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Abstract. We extend our previous treatment of the γ∗p cross section based on Gribov’s hypothesis to the
case of photon–photon scattering. With the aid of two parameters, determined from the experimental data,
we separate the interactions into two categories corresponding to short (“soft”) and long (“hard”) distance
processes. The photon–photon cross section thus receives contributions from three sectors, soft–soft, hard–
hard and hard–soft. The additive quark model is used to describe the soft–soft sector, pQCD the hard–hard
sector, while the hard–soft sector is determined by relating it to the γ∗p system. We calculate and display
the behaviour of the total photon–photon cross section and its various components and polarizations for
different values of energy and virtuality of the two photons, and discuss the significance of our results.

1 Introduction

Scattering in the high energy (low x) limit has been stud-
ied in perturbative QCD (pQCD) over the past few years,
mainly through the analysis of deep inelastic (DIS) events
of lepton–hadron and hadron–hadron collisions. Such
pQCD investigation requires some knowledge of the non-
perturbative contribution which is introduced through the
initial input to the evolution equations or put in explicitly.
In this paper we present a study of virtual photon–photon
scattering. Our investigation is based on our model for γ∗p
cross section [1] , which provides the framework for the
present calculation. Our goal is twofold.

1. In any QCD process, finding the dynamics for interme-
diate distances is still an open problem, as it involves
a transition between short distance (“hard” - pertur-
bative) and large distance (“soft” - non-perturbative)
physics. In [1] we have suggested a procedure, based on
Gribov’s general approach [2], of how to accommodate
both contributions in DIS calculations. Two photon
physics involves an obvious reaction where these ideas
can be further studied and re-examined.

2. Virtual photon–photon scattering has been proposed
[3–6] as a laboratory to study the BFKL Pomeron [7],
as the total cross section of two highly virtual photons
provides a probe of BFKL dynamics. Our study en-
ables one to estimate the background to the proposed
BFKL process. This background consists of two con-
tributions: (i) We give an explicit estimate of the soft
component in γ∗γ∗ scattering. (ii) Our pQCD estimate
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for the hard component is based on DGLAP [8] and as
such can be used to assess when the BFKL dynamics
starts to dominate.
Impressive attempts have been made [9,10] to describe

two photon physics within the framework of the vector
dominance model (VDM) mainly as a soft interaction.
However, one can consider a two photon interaction as
an interesting tool for investigating the interplay between
soft and hard physics [11]. The photon can appear as an
unresolved object or as a perturbative fluctuation into an
interacting quark–antiquark system. A careful analysis of
the various components of the total cross section will help
us understand the interface of the short distance and large
distance interaction.

In e+e− colliders, the measurement of the γ∗γ∗ is car-
ried out by double tagging the outgoing leptons close to
the forward direction, as most of the initial energy is taken
by the scattered electrons. The double tagged cross sec-
tion falls off with the increase of the photons’ virtualities
due to the photon propagator. The experimental statis-
tics are improved for single and no tag events where one
of the colliding photons or both are quasi-real [12]. There
is, therefore, a theoretical interest and an experimental
need to better understand and estimate the perturbative
and non-perturbative contributions with realistic configu-
rations of the two photon virtualities.

Our paper deals with photon–photon collisions in the
high energy limit, which confines us to low x values. A
pQCD investigation of eγ DIS is non-trivial [13] due to
the dual nature of the photon target (quasi-real or virtual)
which can be perceived as either a hadron-like partonic
system or a point-like object. The resulting difficulties in
pQCD calculations of F γ

2 in the small x limit have been ex-
tensively discussed in the literature and several strategies
have been devised to bypass these problems [13]. For the
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purpose of our analysis we follow the approach suggested
by Glück and Reya [14] in which the pQCD calculations
have no predictive power regarding the normalization of
F γ

2 but retain, as for a proton target, the αS dependence
of the evolution equations.

The above philosophy is very appropriate for our pro-
gram where we distinguish between the hard pQCD mode
and the non-perturbative QCD (npQCD) soft mode of the
gluon fields by introducing [1,15], two separation param-
eters (M2

0,T and M2
0,L) in which we match the long and

short distance components of the transverse (T) and lon-
gitudinal (L) contributions to the total γ∗γ∗ cross section.
Our ideology is close to the semiclassical gluon field ap-
proach developed in [16]. This approach allows one to find
a relation between scattering amplitudes and the property
of the QCD vacuum based on the model of the stochastic
vacuum (MSV) [17]. Whereas the MSV is guided by the
assumption of a microscopic structure of the QCD vac-
uum, our model is phenomenologically oriented based on
the additive quark model (AQM) [18]. The MSV has been
combined [11] with the two Pomeron model [19]. In the two
Pomeron model the hard Pomeron is a fixed J-pole whose
Q2 dependence is determined by fitting to the data. In a
pQCD calculation of the hard Pomeron, one has an effec-
tive J-pole whose dependence on x and Q2 is determined
by xG(x,Q2). A short review of the various approaches to
γ∗γ∗ reactions at high energies, stressing the need for a
simultaneous determination of both the soft and the hard
contributing components, has just appeared [20].

The plan of our paper is as follows: In Sect. 2 we review
the generalization of the ideas presented in [1] and outline
the expansion of this model for the γ∗γ∗ cross section. In
Sect. 3 we derive the complete set of formulae for the total
cross section components. We present the details of our
numerical calculations in Sect. 4 and compare our results
with the high energy experimental data available to date.
Our conclusions are summarized in Sect. 5.

2 Review of the approach

Our approach follows from the ideas presented in [21]. This
was first suggested in [15] and successfully applied in [1].

According to Gribov’s general approach [2], the inter-
action of a virtual photon, in any QCD description, can
be interpreted as a two stage process. The first stage is the
fluctuation of the photon into a hadronic system, and in
the next stage the hadronic system interacts with the “tar-
get”, which in our case is another hadronic system from a
different parent photon (see Fig. 1). These two processes
are time ordered and can be treated independently. The
vertex function Γ (M2) of the photon fluctuation into a qq̄
pair of mass M is given by the experimental value of the
ratio

Γ (M2) = R(M2) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

. (1)

The complete process of two virtual photons fluctu-
ating into two quark–antiquark pairs which then interact
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Fig. 1. Gribov’s approach

with each other can be expressed by the following disper-
sion relation:

σ(γ∗γ∗) =
(αem

3π

)2
∫

dM2
1 dM2

2 dM ′2
1 dM ′2

2

× Γ (M2
1 )

(Q2
1 + M2

1 )
Γ (M2

2 )
(Q2

2 + M2
2 )

× σ(M2
1 ,M

′2
1 ;M2

2 ,M
′2
2 ; s)

Γ (M ′2
1 )

(Q2
1 + M ′2

1 )

× Γ (M ′2
2 )

(Q2
2 + M ′2

2 )
, (2)

where σ(M2
1 ,M

′2
1 ;M2

2 ,M
′2
2 ; s) is the cross section of the

interaction between two hadronic systems with masses M1
and M2 before the interaction and M ′

1 and M ′
2 after the

interaction.
We introduce a separation parameter in the mass in-

tegrations, which may be different for a longitudinal and
transverse polarized virtual photon (M0,L and M0,T, re-
spectively). For masses below this parameter, the process
is soft, long range, and hence one cannot describe the pro-
duced hadron state as a qq̄ pair. For masses above the sep-
aration parameter, the distances between the quark and
antiquark are short, and σ(M2

1 ,M
′2
1 ;M2

2 ,M
′2
2 ; s), which

depends on the gluon structure function, can be calcu-
lated in pQCD.

The calculation of the two photon total cross section,
according to our approach, is derived following the same
concepts of the σ(γ∗p) calculations. Each of the two pho-
tons can be soft or hard, and we shall derive the formulae
on this basis. Without loss of generality, we shall con-
sider the case in which one photon (say, the upper one) is
“harder” than the other, hence there are three sectors of
the calculation:
(a) “Hard–hard” when both photons are hard. We treat
the interaction between the two qq̄ pairs in pQCD, cal-
culating all the diagrams in which the upper qq̄ pair are
harder than the gluons in the ladder, and the gluons in the
ladder are harder than the lower pair k2

1 � �21 � �22 � k2
2

(see Fig. 2). The cross section of the interaction in the
hard–hard sector can be expressed through xGq, the dis-
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Fig. 2. Some of the diagrams which
contribute to the pQCD calculations

tribution function of a gluon ladder emitted from a single
quark.

To find xGq we recall that, in the region of small x,
the evolution equation has the form

d2xGq(x,Q2)
d log 1

xd logQ2
=

Nc

π
αS(Q2)xGq(x,Q2). (3)

The solution1 of this equation in the DLLA has already
been given in [22]:

xGq(x,Q2) = G0I0

(
2

√
γ(Q2) log

1
x

)
, (4)

with G0 = 0.0453 and

γ(Q2) =
12Nc

11Nc − 2nf
log

(
log Q2

Λ2

log Q2
0

Λ2

)
. (5)

(b) “Soft–soft” for two soft photons. As stated, this is the
case where neither of the hadronic systems can be treated
in pQCD. Here we use the AQM [18] in which the interac-
tion cross section σ(M2

1 ,M
′2
1 ;M2

2 ,M
′2
2 ; s) is diagonal with

respect to Mj and M ′
j(j = 1, 2).

(c) “Hard–soft” for the case that the upper photon is hard
and the lower photon is soft. This sector is related, up
to factorization, to the hard interaction between a nu-
cleon and a photon, as the lower system is treated non-
perturbatively, while the upper hadronic system is a qq̄
pair with small transverse separation. Thus, the interac-
tion cross section σ(M2

1 ,M
′2
1 ;M2

2 ,M
′2
2 ; s) is not diagonal

and can be expressed through a nucleon gluonic structure
function xG, with a factor of 2/3, to account for the fact
that we replace the nucleon |qqq〉 state with a |qq̄〉 state.

As we shall see, our integrations require knowledge of
xG(x, �2) where �2 also ranges over small values where the

1 The function xGq has an additional term proportional

to (γ(Q2)(log 1/x)−1)1/2K−1

(
2
√

γ(Q2) log 1/x
)
; however, at

low x this term contributes less than 1% and can be neglected.

published parameterizations for xG are not valid. We fol-
low [23,1] and introduce an additional gluon scale µ2 and
assume that the gluon structure function can be approxi-
mated linearly by (�2/µ2)xG

(
x, µ2

)
. Thus, our approach

has two scales; one separating the hard integration from
the soft one, which is related to the size of the quark–
antiquark pair, and the gluon scale which is related to the
size of the quark. For more details, see [1,23,24].

In the next section, we explicitly derive the formulae
for the three sectors described above, taking into account
both transverse and longitudinal polarized photons in each
sector. In our numerical calculations which are presented
in Sect. 4, the choice of our parameters are consistent with
[1].

3 Formulae for the total γ∗γ∗ cross section

3.1 The “hard–hard” components

The pQCD calculation for the total cross section of two
hard photons is illustrated in diagrams of the type shown
in Fig. 2. We denote the production amplitude of the two
systems of qq̄, one from each “hard” photon, by Mλ1λ′

1λ2λ′
2

where λ1 . . . λ
′
2 are the helicities of the four quarks. We

follow [1,15,25] and write Mλ1λ′
1λ2λ′

2
in the form

Mλ1λ′
1λ2λ′

2
=
√

Nc

∫
d2k′

1d
2z′

1

∫
d2k′

2d
2z′

2T1,2ψ1ψ2,

(6)
where T1,2 = T (k′

1, k1, k
′
2, k2) is the transition amplitude

of all the 16 possible diagrams of Fig. 2, ψj = ψj(k′
j , z

′
j),

j = 1, 2, are the wave functions of the qq̄ inside the pho-
tons, and zj(1 − zj) is the fraction of the energy of the
j photon that is carried by the quark (antiquark). Here
and throughout this paper our momentum variables are
defined as the two-dimensional transverse components of
a four momentum, i.e. k ≡ k⊥.

In the leading log(1/x) approximation z = z′ and
therefore the transition amplitude T1,2 does not depend
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on zj , z
′
j . In the limit where k1 � �1 � �2 � k2 we write

T1,2 = i
4πs
2Nc

∫
d2�1

�21

∫
d2�2

�22

× ∆(k1, k
′
1)∆(k2, k

′
2)αS(�21)f

(
x,

�21
�22

)
(7)

where,

∆(kj ,k
′
j) = 2δ(k′

j −kj)−δ(k′
j −kj +�j)−δ(k′

j −kj −�j)
(8)

and f is related to the gluons distribution function which
will be defined below. Substituting T1,2 into Mλ1λ′

1λ2λ′
2

and using the delta functions, we get several combinations
of products of the two wave functions,

Mλ1λ′
1λ2λ′

2
= i

4πs
2
√
Nc

∫ ∏
j

d2�j

�2j

× ∆ψλjλ′
j
(kj , zj)αS(�21)f

(
x,

�21
�22

)
, (9)

with

∆ψ(kj , zj) = 2ψ(kj , zj) − ψ(kj − �j , zj) − ψ(kj + �j , zj).
(10)

For the wave function of the qq̄ pair inside a transverse and
longitudinally polarized photon, we shall use the results
from [25]:

ψ±
λλ′ (kj , zj) = −δλ,−λ′Zfe [(1 − 2zj)λ ∓ 1]

× 2ε± · kj

Q
2
j + k2

j

(transverse), (11)

ψL
λλ′(kj , zj) = −2δλ,−λ′ZfeQjzj(1 − zj)

× 1

Q
2
j + k2

j

(longitudinal). (12)

In (11) and (12), Zf is the charge of the quark with flavour
f in units of the electron charge −e, Q

2 ≡ z(1−z)Q2 and
ε± = (0, 0, 1,±i)/21/2 is the photon polarization vector.

Carrying out the angular integration of ∆ψ, we define
the functions ϕT and ϕL as follows:∫

d2�

[
2ε± · k

Q
2

+ k2
− ε± · (k − �)

Q
2

+ (k − �)2
− ε± · (k + �)

Q
2

+ (k + �)2

]

= πε± · k

∫
d�2

×
Q

2 − k2

Q
2

+ k2
+

Q
2 − k2 + �2√

(Q
2

+ k2 + �2)2 − 4k2�2


≡ πε± · k

∫
d�2ϕT(k2, �2, Q

2
) (13)∫

d2�

[
2

Q
2

+ k2
− 1

Q
2

+ (k − �)2
− 1

Q
2

+ (k + �)2

]

= 2π
∫

d�2

 1

Q
2

+ k2
− 1√

(Q
2

+ k2 + �2)2 − 4k2�2


≡ 2π

∫
d�2ϕL(k2, �2, Q

2
). (14)

There are four hard–hard components for the two photon
cross section, which we denote by σ

h(T)
h(T) , σ

h(L)
h(T), etc. .

We begin with the calculation of σh(T)
h(T) . Using the tran-

sition amplitude (9), the wave function (11) and the an-
gular integration (13), we write

σ
h(T)
h(T) =

∑
Z4

fα
2
em

π4Nc

∫
dz1

[
z2
1 + (1 − z1)2

]
×
∫

dz2
[
z2
2 + (1 − z2)2

]
(15)

×
∫

dk2
1

Q
2
1 + k2

1

∫
dk2

2

Q
2
2 + k2

2

∫
d�21
�21

∫
d�22
�22

× ϕT(k2
1, �

2
1, Q

2
1 )ϕT(k2

2, �
2
2, Q

2
2 )αS(�21)f

(
x,

�21
�22

)
.

In order to perform the integration over z1 and z2, we
introduce the variables M and M̃ :

M2
j =

k2
j

zj(1 − zj)
,

M̃2
j =

�2j
zj(1 − zj)

. (16)

Formally, (15) now has the form

σ
h(T)
h(T) =

∑
Z4

fα
2
em

π4Nc

×
∫

dM2
1

Q2
1 + M2

1

∫
dM2

2

Q2
2 + M2

2

∫
dM̃2

1

M̃2
1

∫
dM̃2

2

M̃2
2

×
∫

d�21
�21

√
1 − 4 �21

M̃2
1

1 − 2 �21

M̃2
1

∫
d�22
�22

√
1 − 4 �22

M̃2
2

1 − 2 �22

M̃2
2

(17)

× ϕT(M2
1 , M̃

2
1 , Q

2
1)ϕ

T(M2
2 , M̃

2
2 , Q

2
2)αS(�21)

× f

(
x,

�21
�22

)
.

We now make some approximations:
(1) In the limit �22 � k2

2 diagrams with k2 �= k′
2 are sup-

pressed; therefore we can neglect the integration over M̃2
2 .

(2) We can also simplify the �21 and �22 integration in the
limits �21 � M̃2

1 and �22 � M̃2
2 . The integrals are domi-

nated by the upper integration limits dictated by the Ja-
cobian, and we can safely replace �21 and �22 in αS and f

by M̃2
1 /4 and M̃2

2 /4, respectively.
(3) Integrating by parts over �21, we redefine the gluon
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ladder emitted by a quark by

αS(�21)xGq

(
x,

�21
�22

)
=
∫ �21

αS(�21)d�
2
1

∫ �22 d�22
�22

f

(
x,

�21
�22

)
.

(18)
Performing these simplifications we obtain

σ
h(T)
h(T) =

4
∑

Z4
fα

2
em

π4Nc

∫
dM2

1

Q2
1 + M2

1

∫
dM2

2

Q2
2 + M2

2

∫
dM̃2

1

M̃4
1

× αS

(
M̃2

1

4

)
xGq

(
x,

M̃2
1

M2
2

)
ϕT(M2

1 , M̃
2
1 , Q

2
1). (19)

As a last step, according to our approach, we set the limits
of the “hard” mass integrations, and replace each 2

∑
Z2

f

with the ratio R(M2).

σ
h(T)
h(T) =

α2
em

π4Nc

∫
M2

0

dM2
1

Q2
1 + M2

1
R(M2

1 )

×
∫

4m2
π

dM̃2
1

M̃4
1

αS

(
M̃2

1

4

)
ϕT(M1, M̃1, Q1)

×
∫ M̃2

1

M2
0

dM2
2

Q2
2 + M2

2
R(M2

2 )xGq

(
x,

M̃2
1

M2
2

)
. (20)

The calculation of σh(L)
h(T) is straightforward. Using the same

assumptions, we find

σ
h(L)
h(T) =

α2
em

4π4Nc
Q2

1

∫
M2

0

dM2
1

Q2
1 + M2

1
R(M2

1 )

×
∫

4m2
π

dM̃2
1

M̃4
1

αS

(
M̃2

1

4

)
ϕL(M1, M̃1, Q1)

×
∫ M̃2

M2
0

dM2
2

Q2
2 + M2

2
R(M2

2 )xGq

(
x,

M̃2
1

M2
2

)
. (21)

We start our calculation of σh(T)
h(L) in the same way as we did

for the case of σh(T)
h(T) , by collecting the transition amplitude

(9), the wave function (11) and the angular integration
(13):

σ
h(T)
h(L) =

2
∑

Z4
fα

2
em

π4Nc
Q2

2

∫
dz1

[
z2
1 + (1 − z1)2

]
×
∫

dz2 [z2(1 − z2)]
2

×
∫

dk2
1

Q
2
1 + k2

1

∫
dk2

2

Q
2
2 + k2

2

∫
d�21
�21

∫
d�22
�22

×ϕT(k2
1, �

2
1, Q

2
1 )ϕL(k2

2, �
2
2, Q

2
2 )αS(�21)

×f

(
x,

�21
�22

)
. (22)

We consider the limit �22 � k2
2 � Q2

2 where ϕL(k2, �2, Q
2
)

−→ 1/k2
2. Using the variables defined in (16), we find the

lower photon part of (22) to be

Q2
2

∫
dz2 {· · ·}

∫
dk2

2 {· · ·}
∫

d�22 {· · ·}

=
∫

dM̃2
2

M̃2
2 (1 − 2 �22

M̃2
2

)

∫
dM2

2

Q2
2 + M2

2

∫
d�22
�2

× Q2
2�

2
2

M2
2 M̃

2
2

. (23)

The maximal value of �22 is M̃2
2 /4 and the �22 integral is

dominated by that value. The lower photon part can now
be written in the form∫

dM̃2
2

M̃4
2

∫
dM2

2

Q2
2 + M2

2

Q2
2

M2
2
. (24)

Substituting (24) in (22), and switching the integration
variables of the upper photon z1, k

2
1 into M2

1 , M̃
2
1 we have

σ
h(T)
h(L) ∝

∫
dM2

1

Q2
1 + M2

1

∫
dM̃2

1

M̃2
1

∫
d�21
�21

√
1 − 4 �21

M̃2
1

1 − 2 �21

M̃2
1

× αS(�21)ϕ
T(M2

1 , M̃
2
1 , Q

2
1)Q

2
2

×
∫

dM2
2

M2
2 (Q2

2 + M2
2 )

∫
dM̃2

2

M̃4
2

f

(
x,

4�21
M̃2

2

)
. (25)

We can now use the definition (18) of xGq, and perform
an integration by parts over M̃2

2 :∫ M̃2
1

M2
2

dM̃2
2

M̃4
2

f =
1

M2
2
xGq −

∫ M̃2
1

M2
2

dM̃2
2

M̃4
2

xGq. (26)

Finally, we integrate by parts over �21 and obtain, in the
limit M̃2

1 � 4�21,

σ
h(T)
h(L) =

2α2
em

π4Nc
Q2

2

∫
M2

0

dM2
1

Q2
1 + M2

1
R(M2

1 )

×
∫

4m2
π

dM̃2
1

M̃4
1

αS

(
M̃2

1

4

)
ϕT(M1, M̃1, Q1)

×
∫ M̃2

1

M2
0

dM2
2

M2
2 (Q2

2 + M2
2 )

R(M2
2 )

{
1

M2
2
xGq

(
x,

M̃2
1

M2
2

)

−
∫ M̃2

1

M2
2

dM̃2
2

M̃4
2

xGq

(
x,

M̃2
1

M̃2
2

)}
. (27)

Following the same procedure, we obtain the last term of
the “hard–hard” sector,

σ
h(L)
h(L) =

α2
em

2π4Nc
Q2

1Q
2
2

∫
M2

0

dM2
1

Q2
1 + M2

1
R(M2

1 )

×
∫

4m2
π

dM̃2
1

M̃4
1

αS

(
M̃2

1

4

)
ϕL(M1, M̃1, Q1)
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×
∫ M̃2

1

M2
0

dM2
2

M2
2 (Q2

2 + M2
2 )

R(M2
2 )

{
1

M2
2
xGq

(
x,

M̃2
1

M2
2

)

−
∫ M̃2

1

M2
2

dM̃2
2

M̃4
2

xGq

(
x,

M̃2
1

M̃2
2

)}
. (28)

3.2 The “soft-soft” components

When the qq̄ pair for both photons have small invariant
masses, the distance between the quark and antiquark is
long, and following [1], we use the AQM and write the
cross section for the interaction of one soft hadron state
with another soft hadron state as

σ
(
M2

1 ,M
′2
1 ;M2

2 ,M
′2
2 ; s

)
= σsoft (M2

1 ,M
2
2 , s
)

(29)

× δ
(
M2

1 − M ′2
1
)
δ
(
M2

1 − M ′2
1
)
.

In [1] we dealt with a photon–proton interaction and used
the pion–proton cross section for parameterizing σsoft. The
soft cross section between two photons is related to σ(πp)
by a factor of 2/3, which comes from the fact that there
are two qq̄ systems as opposed to the the πp case where one
qq̄ pair interacts with a nucleon. This approach is valid in
the region of small x < 0.1. For the πp cross section we use
the Donnachie–Landshoff reggeon parameterization [26],

σDL = AIP

(
M2

1M
2
2

ss0

)−αIP +1

+ AIR

(
M2

1M
2
2

ss0

)−αIR+1

.

(30)
As in the case of hard–hard contributions, the total soft–
soft cross section also has four terms, one for each of
the four possible polarizations of the two photons. These
terms will be denoted by σ

s(T)
s(T) , σ

s(T)
s(L) etc. The contribu-

tions from each soft photon are (j = 1, 2)∫ M2
0,T

4m2
π

R(M2
j )M2

j dM2
j

(Q2
j + M2

j )2
for a transverse photon, (31)

and∫ M2
0,L

4m2
π

R(M2
j )Q2

jdM
2
j

(Q2
j + M2

j )2
for a longitudinal photon. (32)

Note that the limits of integration differ for the different
polarizations (see [1]). Below we summarize the formulae
for the soft–soft components

σ
s(T)
s(T) =

(αem

3π

)2
∫ M2

0,T

4m2
π

M2
1R(M2

1 )dM2
1

(Q2
1 + M2

1 )2

×
∫ M2

0,T

4m2
π

M2
2R(M2

2 )dM2
2

(Q2
2 + M2

2 )2
2
3
σDL; (33)

σ
s(L)
s(T) =

(αem

3π

)2
∫ M2

0,L

4m2
π

Q2
1R(M2

1 )dM2
1

(Q2
1 + M2

1 )2

×
∫ M2

0,T

4m2
π

M2
2R(M2

2 )dM2
2

(Q2
2 + M2

2 )2
2
3
σDL; (34)

σ
s(T)
s(L) =

(αem

3π

)2
∫ M2

0,T

4m2
π

M2
1R(M2

1 )dM2
1

(Q2
1 + M2

1 )2

×
∫ M2

0,L

4m2
π

Q2
2R(M2

2 )dM2
2

(Q2
2 + M2

2 )2
2
3
σDL; (35)

σ
s(L)
s(L) =

(αem

3π

)2
∫ M2

0,L

4m2
π

Q2
1R(M2

1 )dM2
1

(Q2
1 + M2

1 )2

×
∫ M2

0,L

4m2
π

Q2
2R(M2

2 )dM2
2

(Q2
2 + M2

2 )2
2
3
σDL. (36)

3.3 The “hard–soft” components

We now consider the case for the interaction of a hard
photon (the upper) and a soft photon (the lower). We shall
take into account both polarizations of the soft photon
together, and split it into the two terms (31) and (32) at
the end of this section. We start with the case in which the
hard photon is transverse polarized, and denote this term
temporarily as σ

h(T)
s . A priori, our expression for σ

h(T)
s

can be written in the form

σh(T)
s =

2α2
em
∑

Z2
f

3π2Nc

∫
dz1

[
z2
1 + (1 − z1)2

]
×
∫

dk2
1

Q
2
1 + k2

1

∫
d�21
�4

ϕT(k2
1, �

2
1, Q

2
1 )αS(�21)

× f

(
x,

�21
Q2

0

)∫
soft

R(M2
2 )dM2

2

Q2
2 + M2

2
. (37)

We see that in (37) the two photon cross section factorizes,
and we shall deal, for the moment, with the hard piece
alone,

∑
Z2

f

∫
dM2

1

Q2
1 + M2

1

∫
dM̃2

1

M̃2
1

∫
d�21
�41

√
1 − 4 �21

M̃2
1

1 − 2 �21

M̃2
1

×ϕT(M2
1 , M̃

2
1 , Q

2
1)αS(�21)f

(
x,

�21
Q2

0

)
, (38)

where (16) had been used to change variables from
z1, k

2
1, �

2
1 into M2

1 , M̃
2
1 , �

2
1. In the limit 4�21 � M̃2

1 we can
integrate by parts over �21 and obtain

1
2

∫
M2

0,T

R(M2
1 )dM2

1

Q2
1 + M2

1

∫
4
dM̃2

1

M̃4
2

αS

(
M̃2

1

4

)
2
3
xG

(
x,

M̃2
1

4

)
.

(39)
In (39) we replaced �21 in the argument of αS and f with
the dominant point of the integration range and used the
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following equation as the definition of the gluon distribu-
tion function:∫ �2 d�2

�2
αS(�2)f

(
x,

�2

Q2
0

)
=

2
3
xG(x, �2), (40)

where xG(x, �2) is the gluon distribution function in a
nucleon and it can be taken from one of the existing pa-
rameterizations [27,28].

Substituting (39) in (37) we write the expression for
the interaction of hard transverse photon with soft photon
in the form

σh(T)
s =

4α2
em

3π2Nc

∫
soft

dM2
2

Q2
2 + M2

2
R(M2

2 ) (41)

×
∫

M2
0,T

dM2
1

Q2
1 + M2

1
R(M2

1 )
∫

4m2
π

dM̃2
1

M̃4
1

× αS

(
M̃2

1

4

)
2
3
xG

(
x,

M̃2
1

4

)
ϕT(M1, M̃1, Q1).

Notice that the limits of soft integration are specified in
(31)–(32). As stated, we shall separate the soft piece at the
end of the section, but until then we denote it as “

∫
soft”.

The last case is the one where the hard photon is lon-
gitudinally polarized. The formal expression for the cross
section is similar to (37):

σh(L)
s =

4α2
em
∑

Z2
f

3π2Nc

∫
dz1 [z1(1 − z1)]

2

× Q2
1

∫
dk2

1

Q
2
1 + k2

1

∫
d�21
�4

ϕL(k2
1, �

2
1, Q

2
1 )αS(�21)

× f

(
x,

�21
Q2

0

)∫
soft

R(M2
2 )dM2

2

Q2
2 + M2

2
. (42)

Using (16) to change the integration variables into
M2

1 , M̃
2
1 and z1, we write the hard piece of (42) in the

form∑
Z2

f

∫
dz1

∫
dM2

1

Q2
1 + M2

1

∫
dM̃2

1

M̃4
1

ϕT(M2
1 , M̃

2
1 , Q

2
1)

×αS

(
z1(1 − z1)M̃2

1

)
f
(
x, z1(1 − z1)M̃2

1

)
. (43)

Integrating by parts over M̃ we obtain, using (40),

σh(L)
s =

2α2
em

3π2Nc
Q2

1

∫
soft

dM2
2

Q2
2 + M2

2
R(M2

2 ) (44)

×
∫

M2
0

dM2
1

Q2
1 + M2

1
R(M2

1 )
∫

4m2
π

dM̃2
1

M̃2
1

× 2
3
xG(x, M̃2

1 )

[
1

M̃2
1

− ∂

∂M̃2
1

]
ϕL(M1, M̃1, Q1),

where

xG(x, �2) =
∫ 1

0
αS
(
z(1 − z)�2

)
xG
(
x, z(1 − z)�2

)
dz.

(45)

In our approach, we use different cutoffs for transverse and
longitudinal photons, thus the soft pieces of (41) and (44)
– the lower photon – are separated into the two terms of
(31)–(32),∫

soft

R(M2
2 )

Q2
2 + M2

2
dM2

2 −→
∫ M2

0,T

4m2
π

M2
2R(M2

2 )
(Q2

2 + M2
2 )2

dM2
2

+
∫ M2

0,L

4m2
π

Q2
2R(M2

2 )
(Q2

2 + M2
2 )2

dM2
2 . (46)

Substituting (46) in σ
h(T)
s and σ

h(L)
s , we finally obtain the

set of four formulae in the “hard–soft” sector:

σ
h(T)
s(T) =

4α2
em

3π2Nc

∫ M2
0,T

4m2
π

M2
2 dM2

2

(Q2
2 + M2

2 )2
R(M2

2 )

×
∫

M2
0,T

dM2
1

Q2
1 + M2

1
R(M2

1 )
∫

4m2
π

dM̃2
1

M̃4
1

× αS

(
M̃2

1

4

)
2
3
xG

(
x,

M̃2
1

4

)
ϕT(M1, M̃1, Q1); (47)

σ
h(T)
s(L) =

4α2
em

3π2Nc

∫ M2
0,L

4m2
π

Q2
2dM

2
2

(Q2
2 + M2

2 )2
R(M2

2 )

×
∫

M2
0,T

dM2
1

Q2
1 + M2

1
R(M2

1 )
∫

4m2
π

dM̃2
1

M̃4
1

× αS

(
M̃2

1

4

)
2
3
xG

(
x,

M̃2
1

4

)
ϕT(M1, M̃1, Q1); (48)

σ
h(L)
s(T) =

2α2
em

3π2Nc
Q2

1

∫ M2
0,T

4m2
π

M2
2 dM2

2

(Q2
2 + M2

2 )2
R(M2

2 )

×
∫

M2
0,L

dM2
1

Q2
1 + M2

1
R(M2

1 )
∫

4m2
π

dM̃2
1

M̃2
1

(49)

× 2
3
xG(x, M̃2

1 )

[
∂

∂M̃2
1

− 1

M̃2
1

]
ϕL(M1, M̃1, Q1),

σ
h(L)
s(L) =

2α2
em

3π2Nc
Q2

1

∫ M2
0,L

4m2
π

Q2
2dM

2
2

(Q2
2 + M2

2 )2
R(M2

2 )

×
∫

M2
0,L

dM2
1

Q2
1 + M2

1
R(M2

1 )
∫

4m2
π

dM̃2
1

M̃2
1

(50)

× 2
3
xG(x, M̃2

1 )

[
1

M̃2
1

− ∂

∂M̃2
1

]
ϕL(M1, M̃1, Q1).

4 Numerical calculations

Our final expression for the total cross section is a sum of
all terms for the three sectors derived in Sect. 3:

σ(γ∗γ∗) = σ(hard–hard) + σ(hard–soft) + σ(soft–soft),
(51)
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Fig. 3. Our calculations for σ(γγ) and the experimental data

where each of the components in (51) includes terms from
all possible polarizations, with two contributions for each
“non-diagonal” term. In all our numerical calculations we
have used values for the parameters (within the error
bounds) that are consistent with those that had been in-
troduced for the proton photon cross section [1] i.e. 0.7 <
M2

0,T < 0.9 GeV2, M2
0,L ∼< 0.4 GeV2. Being an additional

parameter in the present calculation is Q2
0 which appears

in (5), we set Q2
0 = 0.48 GeV2. In the integration over

very low masses we assume [1,15] that the gluon structure
functions, both in the hard–hard sector and in the hard–
soft sector behave as xG

(
x, �2 < µ2

)
= (�2/µ2)xG

(
x, µ2

)
,

where µ2 = 0.8 GeV2 for xGGRV and µ2 = Q2
0 for xGq.

We initially compare our numerical calculations with
the published experimental data [12,29–31], in which one
photon is always real or semi-real (i.e. Q2

2 = 0). These
are presented in Figs. 3–5, where our calculation and ex-
perimental data are plotted as a function of W for fixed
Q2

1 = 0, 3.5 and 14 GeV2. In the region of high energy, we
find good agreement with the data at each of the mea-
sured virtualities. For real photons, the cross section is
dominated by the soft–soft sector, while for the γ∗γ case
the hard–soft contribution increases, and at high energies
( ∼>50 GeV2) it becomes larger than the soft–soft compo-
nent [see Fig. 6]. The hard–hard component is small at
high energy even for high values Q2

1. We are unable to re-
produce the experimental low energy enhancement which
is clearly observed in the data displayed in Figs. 3–5. This
is a direct consequence of the threshold enhancement as-
sociated with the point-like photon component which is
not included in our calculations.

The total cross section is dramatically reduced when
the second photon is virtual. In Fig. 7 we show for com-
parison the results of the numerical calculation for two

6 8 10 20 40 60 80 100 200
0

20

40

60

Fig. 4. Our calculations for σ(γ∗γ) and the experimental data
for Q2

1 = 3.5GeV2 and Q2
2 = 0

6 8 10 20 40 60 80 100 200
0

5

10

15

20

Fig. 5. Our calculations for σ(γ∗γ) and the experimental data
for Q2

1 = 14GeV2 and Q2
2 = 0

processes at fixed Q2
1 and Q2

2. The first is the collision of
a highly virtual photon (Q2

1 = 3.5, 14 and 20 GeV2) with
a real photon, and the second is the collision of the highly
virtual with a semi-hard photon with Q2

2 = 1 GeV2. When
the second photon is semi-hard, the total cross section is
smaller by a factor of 5–7 for Q2

1 = 3.5 GeV2 and by a
factor of 6–8 for Q2

1 = 20 GeV2. The contribution of the
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Fig. 6. The relative contribution of the three
sectors as a percentage from σ(γ∗γ∗) as a func-
tion of W , for the case of Q2

2 = 0
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Fig. 7. σ(γ∗γ∗) for fixed values of the two
photons virtualities
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Fig. 8. The relative contribution of the three
sectors as a percentage from σ(γ∗γ∗) as a func-
tion of W , for the case of Q2

2 = 1

Fig. 9. σ(γ∗γ∗) as a function of Q2
1 for fixed

W and two different values of Q2
2



E. Gotsman et al.: The components of the γ∗γ∗ cross section 521

1 10 100

0

20

40

60

80

100

1 10 100

0

20

40

60

80

100
0

20

40

60

80

100

Fig. 10. The relative contribution of
the soft–soft, hard–soft and hard–hard
as a percentage from σ(γ∗γ∗) for fix W
and Q2

2. The three graphs on the left
column are for Q2

2 = 0 and right column
correspond to Q2

2 = 1. The values of W
are shown on the left hand side of the
figure

hard–hard sector cannot be neglected when Q2
2 = 1 GeV2,

as can be seen in Fig. 8, where we show the percentage of
the three sectors for the semi-hard second photon for fixed
values of Q2

1. This figure is to be compared with Fig. 6.
It is instructive to study the Q2 dependence of our

formulae as well. We fixed the value of W and Q2
2 and

calculated the total cross section term by term. In Fig. 9
we show the total cross section for two values of Q2

2 and
five values of W , and in Fig. 10 we plot the percentage of
the three sectors at fixed Q2

2 and W . It is worth noting that
at high energies and non-zero virtualities the hard–hard
sector contributes up to 20% of the total cross section.

As far as the photon’s polarization is concerned, our
formalism enables us to define the total cross section as
a sum of four expressions: σT

T , σT
L , σL

T and σL
L , where each

of these components contains contributions from all the
three sectors. For Q2

2 = 0, σT
L = σL

L = 0 and we are left
with only two non-vanishing components, which we can
use to define the ratio between longitudinal and trans-
verse cross section, σL/σT = σL

T/σ
T
T . This ratio is shown

in Fig. 11, as a function of the energy for constant values
of Q2

1, where the decreasing of the longitudinal component
with energy can be seen. Note that at high energies this
ratio approaches the value of ≈ 0.35 and it does not de-
pend on the value of Q2

1. However, if the second photon has
non-zero virtuality, all of the four components contribute
to the total cross section. In Fig. 12 we present the relative
contribution of the polarization components as a percent-

10 100
0

1

2

3

4

5

Fig. 11. σL/σT for the case Q2
2 = 0

age from σ(γ∗γ∗) both for Q2
2 = 0 and Q2

2 = 1 GeV2. The
contribution to the cross section from the component of
two longitudinal photons is less than 5%.
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Fig. 12. The relative contribution of
σT

T , σT
L , σL

T and σL
L as a percentage from

σ(γ∗γ∗) for the case of Q2
2 = 0 (left col-

umn) and Q2
2 = 1GeV2 (right column).

The values of Q2
1 are shown on the left

hand side of the figure

5 Conclusions

In this paper we have presented a detailed calculation
of the total cross section for the collision of two virtual
photons. Our calculations are based upon a generaliza-
tion of Gribov’s formula for γ∗p scattering which has been
amended for the two photon case. In our approach the pa-
rameterization of the two photon interaction is a natural
extension of γ–proton scattering.

We introduce two separation parameters M2
0T and M2

0L
which allows us to stipulate the long and short distance
components of the interaction. With the aid of these pa-
rameters we are able to separate the two photon cross
section into three sectors: soft–soft, hard–soft and hard–
hard. This enables us to investigate the interplay between
the large and short distance processes, and to evaluate
their relative contributions to the total photon–photon
cross section. Our calculation of the soft sector is based
on the DL parameterization. The hard sector is calculated
in pQCD utilizing DGLAP.

The main conclusions of this paper are as follows.
(a) For one or two quasi-real photons our model describes
the data in the region of high energy (small x). Though
the Q2

1 = Q2
2 = 0 interaction of two photons is mainly soft,

it receives a contribution from what we call the hard–soft
sector, which is a signature of short distance processes for
one of the photons. On the other hand, even if one pho-

ton is highly virtual, the soft–soft sector does not vanish,
and therefore npQCD effects also contribute to the hard
photon sector.
(b) In the case where both photons are off shell, the total
cross section is considerably smaller, and the contribution
of the hard–hard sector cannot be neglected. This effect
occurs already for intermediate distances of the order of
1 GeV2.
(c) Comparing σ(γ∗γ) with σ(γ∗γ∗) we observe a some-
what steeper rise of the former as a function of W . This
stems from the hard–hard sector, which has a moderate
energy behaviour, and becomes important only for two off
shell photons at high energies.
(d) Each of the three sector is a sum of four components
for all possible polarizations of the photons. For a realis-
tic situation in which one photon has low virtuality, the
cross section is dominated by the transversely polarized
photons. Terms in which both photons are longitudinally
polarized are small (< 5%), while those for mixed polar-
ization are not negligible.
(e) The hopes that photon–photon physics in LEP2 and
near future e+e− colliders will serve as a clear probe of
BFKL dynamics depends on the relatively small back-
ground from the soft sector and DGLAP hard sector.
Notwithstanding the expected low statistics of double
tagged experiments, we note that these contributions are
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rather significant at realistic values of the interacting pho-
tons virtualities even at high energies.

Acknowledgements. This research was supported in part by the
Israel Science Foundation, founded by the Israeli Academy of
Science and Humanities and by the United States–Israel BSF
Grant #9800276.

References

1. E. Gotsman, E.M. Levin, U. Maor, E. Naftali, Eur. Phys.
J. C 10, 689 (1999)

2. V.N. Gribov, Sov. Phys. JETP 30, 709 (1970)
3. S.J. Brodsky, F. Hautmann, D.E. Soper, Phys. Rev. Lett.

78, 803 (1997)
4. M. Boonekamp, A. De Roeck, C. Royon, S. Wallon, Nucl.

Phys. B 555, 540 (1999)
5. J. Bartels, A. De Roeck, M. Loewe , Z. Phys. C 54, 635

(1992); J. Bartels, A. De Roeck, H Lotter, Phys. Lett. B
389, 742 (1996); J. Bartels, A. De Roeck, C. Ewerz, H.
Lotter, hep-ph/9710500

6. ECFA/DESY LC Physics Working Group: E. Accomando
et al., Phys. Rep. 299, 1 (1998)

7. L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976); E.A.
Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45,
199 (1977); I. Balitskii, L.N. Lipatov, Sov. J. Nucl. Phys.
28, 822 (1978)

8. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15,
438 (1972); L.N. Lipatov, Yad. Fiz. 20, 181 (1974); G.
Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977); Yu.L.
Dokshitser, Sov. Phys. JETP 46, 641 (1977)
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